The Cauchy Operator for Basic Hypergeometric Series

نویسندگان

  • Vincent Y. B. Chen
  • Nancy S. S. Gu
چکیده

We introduce the Cauchy augmentation operator for basic hypergeometric series. Heine’s 2φ1 transformation formula and Sears’ 3φ2 transformation formula can be easily obtained by the symmetric property of some parameters in operator identities. The Cauchy operator involves two parameters, and it can be considered as a generalization of the operator T (bDq). Using this operator, we obtain extensions of the Askey-Wilson integral, the Askey-Roy integral, Sears’ two-term summation formula, as well as the q-analogues of Barnes’ lemmas. Finally, we find that the Cauchy operator is also suitable for the study of the bivariate Rogers-Szegö polynomials, or the continuous big q-Hermite polynomials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Operator Valued Series and Vector Valued Multiplier Spaces

‎Let $X,Y$ be normed spaces with $L(X,Y)$ the space of continuous‎ ‎linear operators from $X$ into $Y$‎. ‎If ${T_{j}}$ is a sequence in $L(X,Y)$,‎ ‎the (bounded) multiplier space for the series $sum T_{j}$ is defined to be‎ [ ‎M^{infty}(sum T_{j})={{x_{j}}in l^{infty}(X):sum_{j=1}^{infty}%‎ ‎T_{j}x_{j}text{ }converges}‎ ‎]‎ ‎and the summing operator $S:M^{infty}(sum T_{j})rightarrow Y$ associat...

متن کامل

A Subclass of Analytic Functions Associated with Hypergeometric Functions

In the present paper, we have established sufficient conditions for Gaus-sian hypergeometric functions to be in certain subclass of analytic univalent functions in the unit disc $mathcal{U}$. Furthermore, we investigate several mapping properties of Hohlov linear operator for this subclass and also examined an integral operator acting on hypergeometric functions.

متن کامل

Some Remarks on Very - Well - Poised 8 φ 7 Series

Nonpolynomial basic hypergeometric eigenfunctions of the Askey–Wilson second order difference operator are known to be expressible as very-well-poised 8φ7 series. In this paper we use this fact to derive various basic hypergeometric and theta function identities. We relate most of them to identities from the existing literature on basic hypergeometric series. This leads for example to a new der...

متن کامل

UvA - DARE ( Digital Academic Repository ) Some remarks on very - well - poised 87 series

Nonpolynomial basic hypergeometric eigenfunctions of the Askey–Wilson second order difference operator are known to be expressible as very-well-poised 8φ7 series. In this paper we use this fact to derive various basic hypergeometric and theta function identities. We relate most of them to identities from the existing literature on basic hypergeometric series. This leads for example to a new der...

متن کامل

One-parameter Orthogonality Relations for Basic Hypergeometric Series

The second order hypergeometric q-difference operator is studied for the value c = −q. For certain parameter regimes the corresponding recurrence relation can be related to a symmetric operator on the Hilbert space l(Z). The operator has deficiency indices (1, 1) and we describe as explicitly as possible the spectral resolutions of the self-adjoint extensions. This gives rise to one-parameter o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008